
Learning Blocking Schemes for Record Linkage∗

Matthew Michelson and Craig A. Knoblock
University of Southern California

Information Sciences Institute,
4676 Admiralty Way

Marina del Rey, CA 90292 USA
{michelso,knoblock}@isi.edu

Abstract

Record linkageis the process of matching records across data
sets that refer to the same entity. One issue within record
linkage is determining which record pairs to consider, since
a detailed comparison between all of the records is imprac-
tical. Blockingaddresses this issue by generating candidate
matches as a preprocessing step for record linkage. For ex-
ample, in a person matching problem, blocking might return
all people with the same last name as candidate matches. Two
main problems in blocking are the selection of attributes for
generating the candidate matches and deciding which meth-
ods to use to compare the selected attributes. These attribute
and method choices constitute ablocking scheme. Previ-
ous approaches to record linkage address the blocking issue
in a largely ad-hoc fashion. This paper presents a machine
learning approach to automatically learn effective blocking
schemes. We validate our approach with experiments that
show our learned blocking schemes outperform the ad-hoc
blocking schemes of non-experts and perform comparably to
those manually built by a domain expert.

Introduction
Record linkage is the process of matching records between
data sets that refer to the same entity. For example, given
databases of AI researchers and Census data, record link-
age finds the common people between them, as in Figure 1.
Since record linkage needs to compare each record from
each dataset, scalability is an issue. Consider the above case,
and assume each dataset consists of just 5,000 records. This
would require 25 million detailed comparisons if all records
are compared. Clearly, this is impractical.

To deal with this issue, a preprocessing step compares
all of the records between the data sets with fast, approx-
imate methods to generated candidate matches. This step
is calledblockingbecause it partitions the full cross product
of record comparisons into mutually exclusive blocks (New-
combe 1967). That is, to block on an attribute, first we sort

∗This research was sponsored by the Air Force Research Labo-
ratory, Air Force Material Command, USAF, under Contract num-
ber FA8750-05-C-0116. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, ei-
ther expressed or implied, of AFRL or the U.S. Government.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Figure 1: Record linkage example

or cluster the data sets by the attribute. Then we apply the
comparison method to only a single member of a block. Af-
ter blocking, the candidate matches are examined in detail
to discover true matches. This paper focuses on blocking.

There are two main goals of blocking. First, the number
of candidate matches generated should be small to minimize
the number of detailed comparisons in the record linkage
step. Second, the candidate set should not leave out any
possible true matches, since only record pairs in the candi-
date set are examined in detail during record linkage. These
blocking goals represent a trade off. On the one hand, the
goal of record linkage is to find all matching records, but the
process also needs to scale. This makes blocking a challeng-
ing problem.

Most blocking techniques rely on themulti-pass approach
of (Herńandez & Stolfo 1998). The general idea of the
multi-pass approach is to generate candidate matches us-
ing different attributes and methods across independent runs.
For example, using Figure 1, one blocking run could gener-
ate candidates by matching tokens on thelast nameattribute
along with first letter of thefirst name. This returns one
true match (M Michelson pair) and one false match (J Jones
pair). Another run could match tokens on thezip attribute.
Intuitively, different runs cover different true matches, so the
union should cover most of the true matches.

The effectiveness of a multi-pass approach depends on
which attributes are chosen and the methods used. For ex-



ample, generating candidates by matching thezip attribute
returns all true matches, but also, unfortunately, every pos-
sible pair. Method choice is just as important. If we change
our last nameandfirst namerule to match on the first three
letters of each attribute, we drop the false match (J Jones).
While past research has improved the methods for com-
paring attributes, such as bi-gram indexing (Baxter, Chris-
ten, & Churches 2003), or improved the ways in which the
data is clustered into blocks (McCallum, Nigam, & Ungar
2000), this has not addressed the more fundamental issue
of blocking research: which attributes should be used and
which methods should be applied to the chosen attributes.
As (Winkler 2005) puts it, “most sets of blocking criteria
are found by trial-and-error based on experience.”

This paper addresses this fundamental question of block-
ing research. We present a machine learning approach to
discovering which methods and which attributes generate a
small number of candidate matches while covering as many
true matches as possible, fulfilling both goals for blocking.
We believe these goals, taken together, are what defineeffec-
tiveblocking, and their optimization is the goal we pursue.

The outline of this paper is as follows. In the next sec-
tion we further define the multi-pass approach and the choice
of which attributes and methods to use for blocking. After
that, we describe our machine learning approach to block-
ing. Then, we present some experiments to validate our idea.
Following that we describe some related work and we finish
with some conclusions and future work.

Blocking Schemes
We can view the multi-pass approach as a disjunction of con-
junctions, which we call aBlocking Scheme. The disjunction
is the union of each independent run of the multi-pass ap-
proach. The runs themselves are conjunctions, where each
conjunction is an intersection between{method,attribute}
pairs.

Using our example from the introduction, one conjunction
is ({first-letter, first name} ∧ {token-match, last name}) and
the other is ({token-match, zip}), so our blocking scheme
becomes:
BS = ({first-letter, first name} ∧ {token-match, last name})
∪ ({token-match, zip})

A blocking scheme should include enough conjunctions
to cover as many true matches as it can. For example, the
first conjunct by itself does not cover all of the true matches,
so we added the second conjunction to our blocking scheme.
This is the same as adding more independent runs to the
multi-pass approach.

However, since a blocking scheme includes as many con-
junctions as it needs, these conjunctions should limit the
number of candidates they generate. As we stated previ-
ously, thezip attribute might return the true positives, but
it also returns every record pair as a candidate. By adding
more {method, attribute} pairs to a conjunction, we can
limit the number of candidates it generates. For example,
if we change ({token-match, zip}) to ({token-match, zip} ∧
{token-match, first name}) we still cover new true matches,
but we only generate one additional candidate.

Therefore effective blocking schemes should learn con-
junctions that minimize the false positives, but learn enough
of these conjunctions to cover as many true matches as pos-
sible. These two goals of blocking can be clearly defined
by the Reduction Ratio and Pairs Completeness (Elfeky,
Verykios, & Elmagarmid 2002).

TheReduction Ratio(RR) quantifies how well the current
blocking scheme minimizes the number of candidates. Let
C be the number of candidate matches andN be the size of
the cross product between both data sets.

RR = 1− C/N

It should be clear that adding more{method,attribute}
pairs to a conjunction increases its RR, as when we changed
({token-match, zip}) to ({token-match, zip} ∧ {token-
match, first name}).

Pairs Completeness (PC) measures the coverage of true
positives, i.e., how many of the true matches are in the can-
didate set versus those in the entire set. IfSm is the number
of true matches in the candidate set, andNm is the number
of matches in the entire dataset, then:

PC = Sm/Nm

Adding more disjuncts can increase our PC. For example,
we added the second conjunction to our example blocking
scheme because the first did not cover all of the matches.

So, if our blocking scheme can optimize both PC and
RR, then our blocking scheme can fulfill both of our defined
goals for blocking: it can reduce the candidate matches for
record linkage without losing matches, which would hinder
the accuracy of the record linkage.

Generating Blocking Schemes
To generate our blocking schemes, we use a modified ver-
sion of the Sequential Covering Algorithm (SCA) which dis-
covers disjunctive sets of rules from labeled training data
(Mitchell 1997). Intuitively, SCA learns a conjunction of at-
tributes , called a rule, that covers some set of positive exam-
ples from the training data. Then it removes these covered
positives examples, and learns another rule, repeating this
step until it can no longer discover a rule with performance
above a threshold. In our case, the positive examples for
SCA are matches between the data sets, and the attributes
SCA chooses from in the algorithm are{method,attribute}
pairs. The result of running SCA in our case will be a block-
ing scheme.

SCA, in its classic form is shown in Table 1.
SCA maps naturally for learning blocking schemes. At

each iteration of the while loop, theLEARN-ONE-RULE
step learns a conjunction that maximizes the reduction ratio

Table 1: Classic Sequential Covering Algorithm
SEQUENTIAL-COVERING(class, attributes, examples, threshold)
LearnedRules← {}
Rule← LEARN-ONE-RULE(class, attributes, examples)
While (PERFORMANCE(Rule) > threshold) do

LearnedRules← LearnedRules ∪Rule
Examples← Examples - {Examples covered by Rule}
Rule← LEARN-ONE-RULE(class, attributes, examples)

Return LearnedRules



(RR). AlthoughLEARN-ONE-RULEis described in detail
later, intuitively, it adds{method, attribute} pairs to con-
junctions to yield higher and higher RR values, until the RR
stops improving.

So, even though a restrictive conjunction might not cover
all of the true matches, as SCA adds more disjuncts, more
of the true matches will be covered, increasing the block-
ing scheme’s pairs completeness (PC). However, the classic
SCA needs to be modified so that we learn as many con-
junctions as are necessary to cover all of the example true
matches. This helps maximize the PC for the training data.
Also, since the algorithm greedily constructs and learns the
conjunctions, it may learn a simpler conjunction at a later
iteration, which covers the true matches of a previous con-
junction. This is an opportunity to simplify the blocking
scheme by replacing the more restrictive conjunction with
the less restrictive one. These two issues are addressed by
our slight modifications to SCA, shown inbold in Table 2.

Table 2: Modified Sequential Covering Algorithm
SEQUENTIAL-COVERING(class, attributes, examples)
LearnedRules← {}
Rule← LEARN-ONE-RULE(class, attributes, examples)
While examples left to cover, do

LearnedRules← LearnedRules ∪Rule
Examples← Examples - {Examples covered by Rule}
Rule← LEARN-ONE-RULE(class, attributes, examples)
If Rule contains any previously learned rules, remove these
contained rules.

Return LearnedRules

The first modification ensures that we keep learning rules
while there are still true matches not covered by a previously
learned rule. This forces our blocking scheme to maximize
PC for the training data.

SCA learns conjunctions independently of each other,
sinceLEARN-ONE-RULEdoes not take into account any
previously learned rules. So we can check the previously
learned rules for containment within the newly learned rule.
Since each of the conjunctions are disjoined together, any
records covered by a more restrictive conjunction will be
covered by a less restrictive conjunction. For example, if our
current scheme includes the conjunction ({token-match,last
name} ∧ {token-match, phone}) and we just learned the
conjunction ({token-match, last name}) then we can remove
the longer conjunction from our learned rules, because all of
the records covered by the more restrictive rule will also be
covered by the less specific one. This is really just an opti-
mization step because the same candidate set will be gener-
ated using both rules versus just the simpler one. However,
fewer rules require fewer steps to do the blocking, which is
desirable as a preprocessing step for record linkage.

Note that we can do the conjunction containment check
as we learn the rules. This is preferred to checking all of
the conjunctions against each other when we finish running
SCA. As will be shown later, we can guarantee that each
newly learned rule is simpler than the rules learned before it
that cover the same attribute(s). The proof of this is given
below, where we define theLEARN-ONE-RULEstep.

Learning each conjunction
As mentioned previously, the algorithm learns each conjunc-
tion, or “blocking criteria,” during theLEARN-ONE-RULE
step of the modified SCA.

To make each step generate as few candidates as possible,
LEARN-ONE-RULElearns a conjunction with as high a re-
duction ratio (RR) as possible. The algorithm itself, shown
in Table 3, is straightforward and intuitive. Starting with
an empty conjunction, we try each{method,attribute} pair,
and keep the ones that yield the higher RR while maintain-
ing a pairs completeness (PC) above a minimum threshold.
Then, we keep adding{method, attribute} pairs to the top
conjunctions until the RR no longer improves, while still
maintaining a PC greater than the threshold.

Note that LEARN-ONE-RULEuses a greedy, general-
to-specific beam search. General-to-specific beam search
makes each conjunction as restrictive as possible because
at each iteration we add another{method, attribute} pair to
the best conjunct. Although any individual rule learned by
general-to-specific beam search might only have a minimum
PC, the disjunction of the final rules, as outlined above, will
combine these rules to increase the PC, just as in the multi-
pass approach. Thus, the goal of eachLEARN-ONE-RULE
is to learn a rule that maximizes RR as much as it can, so
when the rule is disjoined with the other rules, it contributes
as few false-positive, candidate matches to the final candi-
date set as possible. We use a beam search to allow for some
backtracking as well, since we use a greedy approach.

The constraint that a conjunction has a minimum PC en-
sures that the learned conjunction does not over-fit to the
data. If this restriction were not in place, it would be pos-
sible forLEARN-ONE-RULEto learn a conjunction that re-
turns no candidates, uselessly producing an optimal RR.

The algorithm’s behavior is well defined for the minimum
PC threshold. Consider, the case where the algorithm is
learning as restrictive a rule as it can with the minimum cov-
erage. In this case, the parameter ends up partitioning the
space of the cross product of example records by the thresh-
old amount. That is, if we set the threshold amount to 50%
of the examples covered, the most restrictive first rule cov-
ers 50% of the examples. The next rule covers 50% of what
is remaining, which is 25% of the examples. The next will
cover 12.5% of the examples, etc. In this sense, the para-
meter is well defined. If we set the threshold high, we will
learn fewer, less restrictive conjunctions, possibly limiting
our RR, although this may increase PC slightly. If we set it
lower, we cover more examples, but we need to learn more

Table 3: Learning a conjunction of{method, attribute} pairs
LEARN-ONE-RULE(attributes, examples,min thresh, k)
Best-Conjunction← {}
Candidate-conjunctions← all {method, attribute} pairs
While Candidate-conjunctions not empty, do

For each ch∈ Candidate-conjunctions
If not first iteration

ch← ch ∪ {method,attribute}
Remove any ch that are duplicates, inconsistent or not max. specific
if REDUCTION-RATIO(ch)> REDUCTION-RATIO(Best-Conjunction)
and PAIRS-COMPLETENESS(ch)≥min thresh

Best-Conjunction← ch
Candidate-conjunctions← best k members of Candidate-conjunctions

return Best-conjunction



conjuncts. These newer conjuncts, in turn, may be subsumed
by later conjuncts, so they will be a waste of time to learn.
So, as long as this parameter is small enough, it should not
affect the coverage of the final blocking scheme, and smaller
than that just slows down the learning. We left this parame-
ter at 50% for our experiments.1

Since we have described the greedy algorithm, we can
now prove that each rule learned during an iteration is
simpler (has less{method, attribute} pairs) than the rules
learned before it that contain at least one{method, attribute}
pair in common.

Our proof is done by contradiction. Assume we have two
attributesA andB, and a methodX. Also, assume that our
previously learned rules contain the following conjunction,
({X, A}) and we currently learned the rule ({X, A}∧ {X,
B}). That is, we assume our learned rules contains a rule
that is less specific than the currently learned rule. If this
were the case, then there must be at least one training exam-
ple covered by ({X, A}∧ {X, B}) that is not covered by
({X, A}), since SCA dictates that we remove all examples
covered by ({X, A}) when we learn it. Clearly, this can-
not happen, since any examples covered by the more spe-
cific ({X, A}∧ {X, B}) would have been covered by ({X,
A}) already and removed, which means we could not have
learned the rule ({X, A}∧ {X, B}). Thus, a contradiction,
and the assumption is incorrect.

Experimental Evaluation
This section compares our algorithm, which we call BSL
(BlockingSchemeLearner), to other blocking schemes. We
show BSL outperforms blocking schemes built for ad-hoc
record linkage experiments. We also demonstrate that BSL
performs on par with the laboriously hand-crafted rules of a
domain expert.

Our technique uses supervised machine learning, so we
must address the issue of the amount training data. Since
blocking is a preprocessing step for record linkage, we
looked at the record linkage literature, and use the experi-
mental methods most often employed for supervised record
linkage. Many of the papers use 2-fold cross validation with
two similarly sized folds. This equates to labeling roughly
50% of the matches in the data for training. So, we use 2-
fold cross validation, with equally-sized folds, across 10 tri-
als. However, it is unrealistic to label 50% of the data, so we
also present results using 10% of the data for training. We
use the average reduction ratio (RR) and pairs completeness
(PC) for our comparisons.

We also need to mention which methods and attributes
we consider for our blocking schemes in each evaluation.
To make fair comparisons, the set of{method, attribute}
pairs our algorithm chooses from are the cross product of
all methods and attributes used by the system we are com-
paring against. For example, if we tested against an ad-hoc
blocking scheme: ({token-match, last name})∪ ({1st-letter-

1Setting this parameter lower than 50% had an insignificant ef-
fect on our results, and setting it much higher, to 90%, only in-
creased the PC by a small amount (if at all), while decreasing the
RR.

match, first name}), then our{method, attribute} pairs to
learn from are{token-match, last name}, {token-match, first
name}, {1st-letter-match, last name} and{1st-letter-match,
first name}. This way it is the blocking scheme that im-
proves, rather than better methods and attributes. Note also,
in all experiments, we set the K of our beam search to 4 and
the minimum threshold for pairs completeness forLEARN-
ONE-RULEto 50%.

Our first experiment compares our technique to the block-
ing method used by the Marlin system (Bilenko & Mooney
2003). For the experiment we use the restaurants data set
from the paper, matching records from Fodors to Zagat. The
blocking method used by Marlin is an Unnormalized Jaccard
Similarity on the tokens between attributes, with a threshold
set to 1. This is equivalent to finding a matching token be-
tween the attributes, and we call this methodtoken. The at-
tributes for this data are{name, address, cuisine, city}. The
Marlin system used a blocking scheme meant to maximize
the PC, so as not to hinder the record linkage:

BS =({token, name}) ∪ ({token, address}) ∪
({token, cuisine}) ∪ ({token, city})

A blocking scheme learned by BSL is:

BS =({token, name} ∧ {token, address}) ∪
({token, name} ∧ {token, cuisine})

Table 4 shows the performance comparison. The blocking
scheme employed by Marlin returned all of the true matches
but at the expense of the size of the candidate set. The PC of
the generated blocking scheme is 1.84% less, but this only
represents missing 1.005 of the true matches on average. So,
the generated blocking scheme returned a comparable num-
ber of true positives, while considerably reducing the num-
ber of candidates. Note that all results are significant with a
two-tailed t-test andα=0.05.

Table 4: Blocking scheme results on restaurants

RR PC
BSL 99.26 98.16

Marlin 55.35 100.00

We also compare to the blocking scheme used by
the Hybrid-Field Matcher (HFM) record linkage system
(Minton et al. 2005). To compare against HFM we use the
Cars data presented in the paper, along with their blocking
scheme, which maximized PC. On top of the token method
described earlier, the HFM blocking scheme employed two
other methods: 1st-letter-match, which we will callfirst,
and a synonym match, which is a match if tokens between
records are synonyms, such ashatchback = liftback. In this
domain, there are 4 attributes,{make, model, trim, year}.
The blocking scheme used by HFM is:

BS =({token, make} ∧ {token, model} ∧ {token, year}) ∪
({first, make} ∧ {first, model} ∧ {first, year}) ∪
({synonym, trim})

A blocking scheme learned by BSL is:



BS =({token, model} ∧ {token, year} ∧ {token, trim}) ∪
({token, model} ∧ {token, year} ∧ {synonym, trim})

Again, the comparison in Table 5 shows that both per-
form equally well in terms of PC. In fact, there is no signifi-
cant difference statistically with respect to each other, using
a two-tailed t-test withα=0.05. Yet, despite the similar PC,
our generated rules increase the RR by more than 50%.

Table 5: Blocking scheme results on cars

RR PC
BSL 99.86 99.92
HFM 47.92 99.97

In the final comparison, we use synthetic Census data,
called “dataset4” from (Gu & Baxter 2004). Gu and Baxter
present theiradaptive filteringmethod using one method, bi-
gram indexing (Baxter, Christen, & Churches 2003) on one
attribute. We can not generate a different blocking scheme
from theirs since there is only one method and one attribute
to choose from. Instead, we took the attributes and methods
from the 11 blocking criteria presented in (Winkler 2005)
for matching the 2000 Decennial Census to an Accuracy
and Coverage Estimation (ACE) file. We remove the2-way
switch method because it is specific to two attributes, and
we focus on methods that apply generally to the attributes.
This left 3 methods to use:{token, first, first-3}. Token and
first are described above.First-3 is similar to first, but it
matches the 1st three letters of an attribute, rather than just
the 1st one. There are 8 attributes to choose from:{first
name, surname, zip, date-of-birth, day-of-birth, month-of-
birth, phone, house number}.

From these method and attributes, we learn blocking
schemes such as the following:

BS =({first-3, surname} ∧ {first, zip}) ∪
({token, house number} ∧ {first-3, phone}) ∪
({token, house number} ∧ {first-3, date-of-birth}) ∪
({first-3, first name}) ∪
({token, phone}) ∪
({token, day-of-birth} ∧ {token, zip} ∧
{first-3, date-of-birth}) ∪

({token, house number} ∧ {first, first name})
For comparisons we present our results against a block-
ing scheme composed of the best 5 conjunctions of (Win-
kler 2005). As stated in the paper, the “best five” blocking
scheme is:

BS =({token, zip} ∧ {first, surname}) ∪
({token, phone}) ∪
({first-3, zip} ∧ {token, day-of-birth} ∧
{token, month-of-birth}) ∪

({token, zip} ∧ {token, house number}) ∪
({first-3, surname} ∧ {first-3, first name})

Note that the blocking criteria constructed by Winkler are
meant for real census data, not the synthetic data we use.
However, the best-five rule still does impressively well on

this data, as shown in Table 6. This is not surprising as Win-
kler is regarded as an expert on matching census data, and
the synthetic data is not as difficult to match as the real cen-
sus data. Encouragingly, Table 6 also shows our generated
rules performed better on PC and only slightly less on RR
as compared to the domain expert. Note that the RR and PC
results are statistically significant with respect to each other.

Table 6: Blocking scheme results on synthetic census data

RR PC
BSL 98.12 99.85

“Best five” 99.52 99.16
Adaptive Filtering 99.9 92.7

Table 6 also compares theadaptive filteringmethod (Gu
& Baxter 2004) to our method. Although the adaptive filter-
ing results are for all the records in the set, rather than half
as in our 2-fold cross validation, we still think comparing
these results to ours sheds some insight. Observe that adap-
tive filtering maximizes RR tremendously. However, we be-
lieve that it is misguided to focus only on reducing the size
of the candidate set, without addressing the coverage of true
matches. In their best reported result (shown in Table 6),
adaptive filtering achieves a PC which is 92.7. That would
represent leaving out roughly 365 of the 5000 true matches
in the candidate set.

As stated in the beginning of this section, we think train-
ing on 50% of the data is unrealistic. Labeling only 10%
of the data for training represents a much more practical su-
pervised learning scenario, so we ran our experiments again
using 10% of the data for training and testing on the other
90%. Table 7 compares the results, averaged over 10 trials.

Table 7 shows that the algorithm scales well to less train-
ing data. In the cars and census experiments, the degradation
in performance for the learned blocking schemes is small.
The more interesting case is the restaurants data. Here the
blocking scheme trained on 10% of the data did not learn
to cover as many true matches as when we used 50% of the
data for training. In this case, 10% of the data for training
represents 54 records and 11.5 matches, on average, which
was not enough for BSL to learn as good a blocking scheme.
However, the small size of the restaurant data set makes the
result appear worse than it is. Although the percentage drop
in PC seems large, it really only represents missing 6.5 true
matches on average versus missing 1.

This highlights a problem with our approach to learning
blocking schemes. The learned blocking scheme’s ability to
cover true matches is limited by the number of true matches
supplied for training. This is usually a concern with super-
vised learning techniques: the robustness of the learning is
constrained by the amount of training data. In the case of
the restaurant data, because the data set is small this prob-
lem can be highlighted easily. As Figure 2 shows, as we
increase the training data, we can improve the performance
of the PC.



Table 7: Blocking scheme results varying the amount of
training data

Data Set (Amnt. training data) RR PC
Cars (50%) 99.86 99.92
Cars (10%) 99.87 99.88

Census (50%) 98.12 99.85
Census (10%) 99.50 99.13

Restaurants (50%) 99.26 98.16
Restaurants (10%) 99.57 93.48

Figure 2: Graph of RR and PC for varying training data per-
centages on the restaurant data

Related Work
While there is little work on learning blocking schemes,
there is research on improving methods to compare at-
tributes. As already stated, (Baxter, Christen, & Churches
2003), created the bi-gram indexing method and Gu and
Baxter (Gu & Baxter 2004) provided method refinements.
Also, both (McCallum, Nigam, & Ungar 2000) and (Cohen
& Richman 2002), have investigated novel clustering meth-
ods that apply to the blocking problem. Also there is the
Sorted Neighborhood method which uses a sliding window
over sorted records (Hernández & Stolfo 1998). Our frame-
work is general enough that any of these methods can be
included.

Our blocking scheme generation approach is similar to
feature selection. Two good surveys of feature selection are
(Dash & Liu 1997) and (Guyon & Elisseeff 2003). However,
our problem differs slightly in that not only do we need to
discover which features (attributes) of the data set to use,
but we also need to discover which methods to use, all while
optimizing the pairs completeness and reduction ratio.

Conclusion
In this paper, we presented an algorithm to learn good block-
ing strategies rather than creating them by hand, in an ad-hoc
manner. We showed that our technique improves over the
hand-generated blocking schemes produced by non-domain
experts, and is comparable to those produced by a domain
expert. We also demonstrated that our blocking scheme ful-
fills the two main goals of blocking: maximizing both PC
and RR. As a further bonus, our generated blocking schemes

are human readable, which can provide investigators some
intuition into how to cluster or match their data.

In the future, we want to investigate using capture-
recapture methods to estimate the PC of the generated rules
(as done in (Winkler 2005)). This would make it possible to
create an unsupervised and fully automatic method of learn-
ing blocking schemes. We also want to investigate the inclu-
sion of more complicated blocking methods, such as canopy
clustering (McCallum, Nigam, & Ungar 2000).

References
Baxter, R.; Christen, P.; and Churches, T. 2003. A compar-
ison of fast blocking methods for record linkage. InPro-
ceedings of the ACM SIGKDD Workshop on Data Clean-
ing, Record Linkage, and Object Identification.
Bilenko, M., and Mooney, R. J. 2003. Adaptive dupli-
cate detection using learnable string similarity measures.
In Proceedings of ACM SIGKDD-03, 39–48.
Cohen, W. W., and Richman, J. 2002. Learning to match
and cluster large high-dimensional data sets for data inte-
gration. InProceedings of ACM SIGKDD-02, 475–480.
Dash, M., and Liu, H. 1997. Feature selection for classifi-
cation. Intelligent Data Analysis1(3):131–156.
Elfeky, M. G.; Verykios, V. S.; and Elmagarmid, A. K.
2002. TAILOR: A record linkage toolbox. InProceed-
ings of 18th International Conference on Data Engineering
(ICDE).
Gu, L., and Baxter, R. 2004. Adaptive filtering for effi-
cient record linkage. InProceedings of of the 4th SIAM
International Conferece on Data Mining.
Guyon, I., and Elisseeff, A. 2003. An introduction to vari-
able and feature selection.Journal of Machine Learning
Research3:1157–1182.
Herńandez, M. A., and Stolfo, S. J. 1998. Real-world data
is dirty: Data cleansing and the merge/purge problem.Data
Mining and Knowledge Discovery2(1):9–37.
McCallum, A.; Nigam, K.; and Ungar, L. H. 2000. Ef-
ficient clustering of high-dimensional data sets with ap-
plication to reference matching. InProceedings of ACM
SIGKDD-00, 169–178.
Minton, S. N.; Nanjo, C.; Knoblock, C. A.; Michalowski,
M.; and Michelson, M. 2005. A heterogeneous field match-
ing method for record linkage. InProceedings of the 5th
IEEE International Conference on Data Mining (ICDM).
Mitchell, T. M. 1997. Machine Learning. New York:
McGraw-Hill.
Newcombe, H. B. 1967. Record linkage: The design of ef-
ficient systems for linking records into individual and fam-
ily histories.American Journal of Human Genetics19(3).
Winkler, W. E. 2005. Approximate string comparator
search strategies for very large administrative lists. Tech-
nical report, Statistical Research Report Series (Statistics
2005-02) U.S. Census Bureau.


